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Abstract: Assume an arbitrary 2-form over R4, and a fixed point x in R4 for which the signs
[+,0,-] of all six coordinates of the 2-form are known, are given.  If the 2-form factors into a
wedge product of two 1-forms, a complete classification of the possible combinations of signs of
the coordinates of the 1-forms (at x) is presented.  Also, it is shown that some sign combinations
in the coordinates of the 2-form preclude the 2-form being factorizable into a wedge product of
two 1-forms.

Why would we want this problem solved?

An elementary example is relativistic gyroscopic precession.  A spinning body (an
electron, the Earth, etc.) that accelerates because forces act on its center of mass precesses its axis
of rotation according to the formula

dS/dτ = (u ^ a)·S

where τ is proper time measured along the object's worldline, S is the angular-moment 4-vector
of the object, u is the 4-velocity of the object, and a is the 4-acceleration applied to the center of
mass of the object.  The pointwise algebraic constraints discussed in this paper are constraints on
the 2-form , which is known to be a wedge product of two 1-forms.  [From another point of view,
the angular momentum is Fermi-Walker transported.]

By definition, all 4-vectors, 1-forms, and 2-forms mentioned are over a 4-dimensional
space-time manifold, which locally cannot be distinguished from R4 .  Thus, the pointwise
algebraic constraints, to be discussed, are applicable in any space-time manifold, except at
singularities.



Problem definition

Use the standard basis for R4, and the induced standard basis for 1-forms and 2-forms
over R4.  Denote the coordinates (in R) of a fixed 2-form ω (at a fixed point x in R4), by

ω(x)=c12dx1^dx2+c13dx1^dx3+c14dx1^dx4+c23 dx2^dx3+c24dx2^dx4+c34dx3^dx4

Also, (assuming that 1-forms α, β exist such that ω = α^β ), denote these in coordinates (in R) by

α(x)=a1dx1+a2dx2+a3dx3+a4dx4

β(x)=b1dx1+b2dx2+b3dx3+b4dx4

Recall that in (assumed possible) the coordinate computation of  ω = α^β,

c12=a1b2-a2b1     c13=a1b3-a3b1     c14=a1b4-a4b1

c34=a3b4-a4b3     c24=a2b4-a4b2     c23=a2b3-a3b2

We sometimes use i,j = 1..4. [ i<j] when used as subscripts in cij; otherwise, i and j are not
necessarily related.  Note that in the above translation, using the permutation [ab] on the above
equations is the coordinate version of writing -ω = β^α.  We will use this freely when using the
computational lemmas [i.e.: the permutation [ab] may be applied globally in a lemma, provided
all of the cij are negated.]

Finally, we require that it be known, for each of the 2-form coordinates cij, whether it is positive,
zero, or negative [cij>0, cij=0, cij<0].  Parts of the classification will consider two of these cases at
once, for various cij.

From this information, we want to know:
• Is it possible to rule out a factorization ω = α^β, just from the sign information for the cij?
• If we have failed to rule out such a factorization ω = α^β, what does the sign information

for the cij allow us to infer about sign information for the ai, bj?

Computing the action of the symmetric group S4 on the coordinates

It will be useful, in reducing the amount of work in the classification, to have an explicit
description of the action of the symmetric group S4 on the 2-form coordinates cij, as well as the
effects of this action on the constraints. [For the rest of this paper, S4 shall always refer to the
symmetric group S4.]



The overall results are as follows:

id [12] [13] [14] [23] [24] [34] [123] [132] [124] [142] [134]

c12 -c12 -c23 -c24 c13 c14 c12 c23 -c13 c24 -c14 -c23

c13 c23 -c13 -c34 c12 c13 c14 -c12 -c23 c23 -c34 c34

c14 c24 c34 -c14 c14 c12 c13 c24 c34 -c12 -c24 -c13

c23 c13 -c12 c23 -c23 -c34 c24 -c13 c12 -c34 c14 c24

c24 c14 c24 -c12 c34 -c24 c23 c34 c14 -c14 c12 -c12

c34 c34 c14 -c13 c24 -c23 -c34 c14 c24 -c13 -c23 -c14

[143] [234] [243] [12]
[34]

[13]
[24]

[14]
[23]

[1234] [1243] [1324] [1342] [1423] [1432]

-c24 c13 c14 -c12 c34 -c34 c23 c24 c34 -c13 -c34 -c14

-c14 c14 c12 c24 -c13 -c24 c24 -c12 -c23 c34 -c14 -c24

-c34 c12 c13 c23 -c23 -c14 -c12 c23 -c13 -c23 -c24 c34

-c12 c34 -c24 c14 -c14 -c23 c34 -c14 -c24 c14 -c13 c12

c23 -c23 -c34 c13 -c24 -c13 -c13 -c34 -c14 c12 -c23 c13

c13 -c24 c23 -c34 c12 -c12 c14 c13 -c12 -c24 c12 c23

A graphical method of computing the above action is illustrated as follows:

The edges with vertices i,j index the coefficient cij, in standard orientation.  It will be convenient
to define [for 1≤i<j≤4]

cji := -cij

Then we can write
that αεS4 maps cij to
cα(i)α(j).



As an example, consider the image of the transposition [12]:

Either the graphical
method, or the
algebraic-table
method, may be used
in calculating the
equivalence classes
of the various cases
in the classification.

Computational facts

Besides the sign information about aibj relative to ai and bj, and cij relative to aibj-ajbi,

bj<0 bj=0 bj>0 ajbi<0 ajbi=0 ajbi>0

ai<0 aibj>0 aibj=0 aibj<0 aibj<0 cij?0 cij<0 cij<0

ai=0 aibj=0 aibj=0 aibj=0 aibj=0 cij>0 cij=0 cij<0

ai>0 aibj<0 aibj=0 aibj>0 aibj>0 cij>0 cij>0 cij?0

Note: cij<0 implies [ai<0 AND bj>0]
OR [ai>0 AND bj<0]
OR [aj<0 AND bi<0]
OR [aj>0 AND bi>0]

Note: cij>0 implies [ai<0 AND bj<0]
OR [ai>0 AND bj>0]
OR [aj<0 AND bi>0]
OR [aj>0 AND bi<0]



Note: cij=0 implies [ai<0 AND aj<0 AND bi<0 AND bj<0]
OR [ai>0 AND aj<0 AND bi<0 AND bj>0]
OR [ai<0 AND aj>0 AND bi>0 AND bj<0]
OR [ai>0 AND aj>0 AND bi>0 AND bj>0]
OR [ai=0 AND aj=0]
OR [ai=0 AND bi=0]
OR [bj=0 AND aj=0]
OR [bj=0 AND bi=0]
OR [ai<0 AND aj<0 AND bi>0 AND bj>0]
OR [ai>0 AND aj<0 AND bi>0 AND bj<0]
OR [ai<0 AND aj>0 AND bi<0 AND bj>0]
OR [ai>0 AND aj>0 AND bi<0 AND bj<0]

Note [there is an analog for ai≠0≠aj]:

bi≠0≠b j IMPLIES [

cij=ai b j−a jbi0 iff
ai
bi

a j
b j

cij=ai b j−a jbi=0 iff
ai
bi
=
a j
b j

cij=ai b j−a jbi0 iff
ai
bi

a j
b j

]

Note: the configuration cij=0=cik, cjk≠0, implies that at least one of ai, aj, ak is zero, and
also that at least one of bi, bj, and bk is zero. [Otherwise, the calculational note about comparing
quotients applies, and cjk=0 — contradiction.].  As a shorthand, we refer to instances of the above
comment as ALO1(i,j,k); the arguments do not commute, and j<k by convention.

In fact, the conditions yielding ALO1(i,j,k) actually imply that [ai=0=bi]. [This will be
Lemma 2, later.] We will prove this directly at Lemma 2.  A way to visualize this is that the
cross-product of two vectors in R3 is the dual of the wedge product of the vectors (reinterpreted
coordinate-wise as 1-forms) over R3. The hypothesis then translates to requiring the cross-product
to be a vector that is non-zero only in the first coordinate; since the cross-product, geometrically,
is perpendicular to both of the vectors it was computed from, both of the vectors it was computed
from have first coordinate zero. [Actually, we will (re)prove that the visualization is a correct
interpretation of the cross-product over R3.]



Computational Lemmas

Lemma 0
[[ai=0 OR bj=0] AND cij<0]  IMPLIES  ajbi>0
[[ai=0 OR bj=0] AND cij=0]  IMPLIES  ajbi=0
[[ai=0 OR bj=0] AND cij>0]  IMPLIES  ajbi<0
[[aj=0 OR bi=0] AND cij<0]  IMPLIES  aibj<0
[[aj=0 OR bi=0] AND cij=0]  IMPLIES  aibj=0
[[aj=0 OR bi=0] AND cij>0]  IMPLIES  aibj>0

Sketch of calculational proof: element chase of the first two tables in the computational facts.
The first three use the hypothesis to single out the second row of the RHS table, while the last
three use the hypothesis to single out the second column of the RHS table.

Lemma 1
[[ai=0 OR [bj=0 AND bk=0]] AND cij≠0 AND cik=0]  IMPLIES  ak=0

Sketch of calculational proof:
Recall that cij=aibj - ajbi.  Use Lemma 0 with cij≠0 to get ajbi≠0 [making bi≠0], and with

cik=0 to get akbi=0.  Since bi≠0, and R has no zero divisors, ak=0.

[NOTE: other variations on the above hypotheses [two 2-form coordinates with a common
index, and a variable entering into at least one of the coordinate calculations, are constrained]
lead to repeats of instances of lemma 0.  I have suppressed the repeats of lemma 0 in lemma 1.]

Lemma 2:
[cij=0=cik AND cjk≠0] IMPLIES [ai=0=bi AND cim=0]



Sketch of calculational proof:
We have (using calculational notes about the hypothesized entries):
[ [ai<0 AND aj<0 AND bi<0 AND bj<0]

OR [ai>0 AND aj<0 AND bi<0 AND bj>0]
OR [ai<0 AND aj>0 AND bi>0 AND bj<0]
OR [ai>0 AND aj>0 AND bi>0 AND bj>0]
OR [ai=0 AND aj=0]
OR [ai=0 AND bi=0]
OR [bj=0 AND aj=0]
OR [bj=0 AND bi=0]
OR [ai<0 AND aj<0 AND bi>0 AND bj>0]
OR [ai>0 AND aj<0 AND bi>0 AND bj<0]
OR [ai<0 AND aj>0 AND bi<0 AND bj>0]
OR [ai>0 AND aj>0 AND bi<0 AND bj<0] ]

AND [ [ai<0 AND ak<0 AND bi<0 AND bk<0]
OR [ai>0 AND ak<0 AND bi<0 AND bk>0]
OR [ai<0 AND ak>0 AND bi>0 AND bk<0]
OR [ai>0 AND ak>0 AND bi>0 AND bk>0]
OR [ai=0 AND ak=0]
OR [ai=0 AND bi=0]
OR [bk=0 AND ak=0]
OR [bk=0 AND bi=0]
OR [ai<0 AND ak<0 AND bi>0 AND bk>0]
OR [ai>0 AND ak<0 AND bi>0 AND bk<0]
OR [ai<0 AND ak>0 AND bi<0 AND bk>0]
OR [ai>0 AND ak>0 AND bi<0 AND bk<0] ]

AND [ [aj≠0 AND bk≠0]
OR [ak≠0 AND bj≠0] ]



The third OR-clause implies (but not conversely) that [aj≠0 OR bj≠0] and [ak≠0 OR bk≠0].
Applying this to the first and second OR-clauses yields:

[ [ai<0 AND aj<0 AND bi<0 AND bj<0]
OR [ai>0 AND aj<0 AND bi<0 AND bj>0]
OR [ai<0 AND aj>0 AND bi>0 AND bj<0]
OR [ai>0 AND aj>0 AND bi>0 AND bj>0]
OR [ai=0 AND aj=0]
OR [ai=0 AND bi=0]
OR [bj=0 AND bi=0]
OR [ai<0 AND aj<0 AND bi>0 AND bj>0]
OR [ai>0 AND aj<0 AND bi>0 AND bj<0]
OR [ai<0 AND aj>0 AND bi<0 AND bj>0]
OR [ai>0 AND aj>0 AND bi<0 AND bj<0] ]

AND [ [ai<0 AND ak<0 AND bi<0 AND bk<0]
OR [ai>0 AND ak<0 AND bi<0 AND bk>0]
OR [ai<0 AND ak>0 AND bi>0 AND bk<0]
OR [ai>0 AND ak>0 AND bi>0 AND bk>0]
OR [ai=0 AND ak=0]
OR [ai=0 AND bi=0]
OR [bk=0 AND bi=0]
OR [ai<0 AND ak<0 AND bi>0 AND bk>0]
OR [ai>0 AND ak<0 AND bi>0 AND bk<0]
OR [ai<0 AND ak>0 AND bi<0 AND bk>0]
OR [ai>0 AND ak>0 AND bi<0 AND bk<0] ]

AND [ [aj≠0 AND bk≠0]
OR [ak≠0 AND bj≠0] ]

Now, ALO1(i,j,k) implies that when we expand the AND of the first two OR-clauses: the first
four, and the last four, of the terms in the first OR-clause cannot successfully expand with any of
the eleven terms in the second OR-clause. [The first four and the last four terms of the second
OR-clause violate ALO1(i,j,k), and the central three terms of the second OR-clause directly
contradict the term from the first OR-clause that we are expanding.] Similar reasoning holds with
the first four, and the last four, terms of the second OR-clause with respect to the first OR-clause.
This allows reducing the above to:

[ [ai=0 AND aj=0]
OR [ai=0 AND bi=0]
OR [bj=0 AND bi=0] ]

AND [ [ai=0 AND ak=0]
OR [ai=0 AND bi=0]
OR [bk=0 AND bi=0] ]

AND [ [aj≠0 AND bk≠0]
OR [ak≠0 AND bj≠0] ]



Now, expand the AND of the first two OR-clauses:
[ [[ai=0 AND aj=0] AND [ai=0 AND ak=0]]

OR [[ai=0 AND aj=0] AND [ai=0 AND bi=0]]
OR [[ai=0 AND aj=0] AND [bk=0 AND bi=0]]
OR [[ai=0 AND bi=0] AND [ai=0 AND ak=0]]
OR [[ai=0 AND bi=0] AND [ai=0 AND bi=0]]
OR [[ai=0 AND bi=0] AND [bk=0 AND bi=0]]
OR [[bj=0 AND bi=0] AND [ai=0 AND ak=0]]
OR [[bj=0 AND bi=0] AND [ai=0 AND bi=0]]
OR [[bj=0 AND bi=0] AND [bk=0 AND bi=0]] ]

AND [ [aj≠0 AND bk≠0]
OR [ak≠0 AND bj≠0] ]

i.e. (Redundancy elimination only, no sorting, remove second duplicate term: first OR-clause)
[ [ai=0 AND aj=0 AND ak=0]

OR [ai=0 AND aj=0 AND bi=0]
OR [ai=0 AND aj=0 AND bk=0 AND bi=0]
OR [ai=0 AND bi=0 AND ak=0]
OR [ai=0 AND bi=0]
OR [ai=0 AND bi=0 AND bk=0]
OR [bj=0 AND bi=0 AND ai=0 AND ak=0]
OR [bj=0 AND bi=0 AND ai=0]
OR [bj=0 AND bi=0 AND bk=0] ]

AND [ [aj≠0 AND bk≠0]
OR [ak≠0 AND bj≠0] ]

Now, the second OR-clause also yields [aj≠0 OR ak≠0] and [bj≠0 OR bk≠0].  This removes the
first and last clauses of the first OR-clause:

[ [ai=0 AND aj=0 AND bi=0]
OR [ai=0 AND aj=0 AND bk=0 AND bi=0]
OR [ai=0 AND bi=0 AND ak=0]
OR [ai=0 AND bi=0]
OR [ai=0 AND bi=0 AND bk=0]
OR [bj=0 AND bi=0 AND ai=0 AND ak=0]
OR [bj=0 AND bi=0 AND ai=0] ]

AND [ [aj≠0 AND bk≠0]
OR [ak≠0 AND bj≠0] ]



We can now factor [ai=0 AND bi=0] out of the first OR-clause:
[ai=0 AND bi=0]

AND [ [aj=0]
OR [aj=0 AND bk=0]
OR [ak=0]
OR [true]
OR [bk=0]
OR [bj=0 AND ak=0]
OR [bj=0] ]

AND [ [aj≠0 AND bk≠0]
OR [ak≠0 AND bj≠0] ]

i.e. [the first OR-clause is trivially true]
[ai=0 AND bi=0]

AND [ [aj≠0 AND bk≠0]
OR [ak≠0 AND bj≠0] ]

It is now trivial that cim=0.

Lemma 3:
[cij=0 AND cik≠0 AND cjk≠0] IMPLIES [ai=0 IFF aj=0]

swap a, b
[cij=0 AND cik≠0 AND cjk≠0] IMPLIES [bi=0 IFF bj=0]

Sketch of calculational proof:
Assume cij=0, cik≠0≠cjk.  Then Lemma 1 yields both ‘ai=0 implies aj=0' [cik≠0, cij=0] and

‘aj=0 implies ai=0' [cjk≠0, cij=0], i.e. ‘ai=0 iff aj=0'.

Lemma 4:
c13c24 = c12c34+c14c23



Sketch of calculational proof:
c12c34+c14c23 = [a1b2-a2b1][a3b4-a4b3]+[a1b4-a4b1][a2b3-a3b2]

= a1b2a3b4 - a1b2a4b3 - a2b1a3b4 + a2b1a4b3 + a1b4a2b3 - a1b4a3b2 - a4b1a2b3 + a4b1a3b2

= - a1b2a4b3 - a2b1a3b4 + a1b4a2b3 + a4b1a3b2 = [a1b3 - a3b1][a2b4 - a4b2] = c13c24

It is a routine check that this equation is fixed under the S4 vertex action. [The simplest way is to
verify that the sign of all three terms is negated under the transpositions [14], [24], [34] — which
are a generating set for S4.]

The classification

We will first do a preliminary classification, based on whether cij = 0, or cij ≠0.
We first enumerate the distinct cases (for the cij) under the action of S4 on the indexes 1..4, and
then explicitly describe the possible cases for the ai and bj, for each case of the cij.

We first enumerate representatives of the equivalence classes of the constraints:

Partial
case

c12 c13 c14 c23 c24 c34 Images
under
S4

action

Total
cases
per
image

Total
cases
indexed
by
partial
case

0 ≠0 ≠0 ≠0 ≠0 ≠0 ≠0 1 26=64 64

1 =0 ≠0 ≠0 ≠0 ≠0 ≠0 6 25=32 192

2A =0 =0 ≠0 ≠0 ≠0 ≠0 12 24=16 192

2B =0 ≠0 ≠0 ≠0 ≠0 =0 3 24=16 48

3A =0 =0 =0 ≠0 ≠0 ≠0 4 23=8 32

3B =0 ≠0 ≠0 =0 ≠0 =0 12 23=8 96

3C =0 =0 ≠0 =0 ≠0 ≠0 4 23=8 32

4A =0 ≠0 =0 =0 ≠0 =0 3 22=4 12

4B =0 =0 =0 =0 ≠0 ≠0 12 22=4 48

5 =0 =0 =0 =0 =0 ≠0 6 21=2 12

6 =0 =0 =0 =0 =0 =0 1 20=1 1

The last column is for how many cases in the total classification are indexed by the above partial
cases.  The left-hand factor is the number of images of the representative under the S4 action on
the vertices; the right-hand factor is 2 to the number of ≠0 constraints in the partial case.
As a cross-check, note that the sum of the counts is 729[= 36], the number of cases to be dealt
with in the total classification.  Also, note that all of these cases are preserved by commuting the
1-forms in the wedge product [coordinate-wise, swapping a and b with the permutation [ab].] We



will use this symmetry freely, without comment, in the preliminary classification.

Note: Cases 2A, 3B, and 4A directly violate both Lemma 2 and Lemma 4, thus cannot factor into
a wedge product of 1-forms.  We only need to analyze the other cases.

Case 0: [c12≠0, c13≠0, c14≠0, c23≠0, c24≠0, c34≠0]
[Symmetry on vertices: S4]

In Case 0, from all 6 cij≠0 we have:
[a1≠0 AND b2≠0] OR [a2≠0 AND b1≠0]
[a1≠0 AND b3≠0] OR [a3≠0 AND b1≠0]
[a1≠0 AND b4≠0] OR [a4≠0 AND b1≠0]
[a2≠0 AND b3≠0] OR [a3≠0 AND b2≠0]
[a2≠0 AND b4≠0] OR [a4≠0 AND b2≠0]
[a3≠0 AND b4≠0] OR [a4≠0 AND b3≠0]

Lemma 4 rules out the following 16 subcases (either verify the S4 vertex action and the kernel, or
all 16 cases):

Computation of images under vertex S4 action of
c_12<0, c_13<0, c_14<0, c_23<0, c_24>0, c_34<0
            12 13 14 23 24 34
[id] <  <  <  <  >  < [234],[243] // kernel
[23] <  <  <  >  <  > [24],[34]
[14] <  >  >  <  >  > [1423],[1432]
[13][24] <  >  >  >  <  < [132],[134]
[12] >  <  >  <  <  < [1243],[1234]
[14][23] >  <  >  >  >  > [142],[143]
[12][34] >  >  <  <  <  > [123],[124]
[13] >  >  <  >  >  < [1324],[1342]

This does not contain its sign-flip, qualitatively.
Thus, the commuted case is depicted by:
Dual computation of images under vertex S4 action of
c_12>0, c_13>0, c_14>0, c_23>0, c_24<0, c_34>0
            12 13 14 23 24 34
[id] >  >  >  >  <  > [234],[243] // kernel
[23] >  >  >  <  >  < [24],[34]
[14] >  <  <  >  <  < [1423],[1432]
[13][24] >  <  <  <  >  > [132],[134]
[12] <  >  <  >  >  > [1243],[1234]
[14][23] <  >  <  <  <  < [142],[143]
[12][34] <  <  >  >  >  < [123],[124]
[13] <  <  >  <  <  > [1324],[1342]

Case 1: [c12=0, c13≠0, c14≠0, c23≠0, c24≠0, c34≠0]
[Symmetry on vertices: <[12],[34]> subgroup S4]



Lemma 3 yields [c12=0,  c13≠0, c14≠0]:
a1=0 IFF a2=0
b1=0 IFF b2=0

From  c13≠0, c14≠0, c23≠0, c24≠0, c34≠0, we have (after using above):
[a1≠0 AND b3≠0] OR [a3≠0 AND b1≠0]
[a1≠0 AND b4≠0] OR [a4≠0 AND b1≠0]
[a3≠0 AND b4≠0] OR [a4≠0 AND b3≠0]

Lemma 4 rules out the following subcases (again, either verify the S4 action and the kernels, or
all of the cases):

12 13 14 23 24 34
...
Type II: failed Lemma 4

= < < < > < [id] // kernel
= < > < < < [12]
= < < > < > [34]
= > < < < > [12][34]

Type III: failed Lemma 4
= < < < > > [id] // kernel
= < > < < > [12]
= < < > < < [34]
= > < < < < [12][34]

...
Type III sign-flip: failed Lemma 4

= > > > < < [id] // kernel
= > < > > < [12]
= > > < > > [34]
= < > > > > [12][34]

Type II sign-flip: failed Lemma 4
= > > > < > [id] // kernel
= > < > > > [12]
= > > < > < [34]
= < > > > < [12][34]

Case 2B: [c12=0, c13≠0, c14≠0, c23≠0, c24≠0, c34=0]
[Symmetry on vertices: <[12],[34],[13][24]> subgroup S4]

Lemma 3 yields [c12=0, c13≠0, c14≠0, c23≠0, c24≠0, c34=0]:
a1=0 IFF a2=0
b1=0 IFF b2=0
a3=0 IFF a4=0
b3=0 IFF b4=0

From  c13≠0, we have:
[a1≠0 AND b3≠0] OR [a3≠0 AND b1≠0]



Lemma 4 rules out the following subcases (again, either verify the S4 action and the kernels, or
all of the cases):

12 13 14 23 24 34
...
Type II: failed Lemma 4

= < < < > = [id] // kernel
= < > < < = [12]
= < < > < = [34]
= > < < < = [12][34]

...
Type II sign-flip: failed Lemma 4

= > > > < = [id] // kernel
= > < > > = [12]
= > > < > = [34]
= < > > > = [12][34]

Case 3A: [c12=0, c13=0, c14=0, c23≠0, c24≠0, c34≠0]
[Symmetry on vertices: Perm({2,3,4}) subgroup S4]

Lemma 2 [c12=0, c13=0, c23≠0] yields for Case 3A:
a1=0=b1

We also have, from c23≠0, c24≠0, c34≠0:
[a2≠0 AND b3≠0] OR [a3≠0 AND b2≠0]
[a2≠0 AND b4≠0] OR [a4≠0 AND b2≠0]
[a3≠0 AND b4≠0] OR [a4≠0 AND b3≠0]

Case 3C: [c12=0, c13=0, c14≠0, c23=0, c24≠0, c34≠0]
[Symmetry on vertices: S3 subgroup S4]

Lemma 3 yields [c12=0, c14≠0, c24≠0; c13=0, c14≠0, c34≠0; c23=0, c24≠0, c34≠0]:
a1=0 IFF a2=0 IFF a3=0
b1=0 IFF b2=0 IFF b3=0

From c14≠0, we also have:
[a1≠0 AND b4≠0] OR [a4≠0 AND b1≠0]

Case 4B: [c12=0, c13=0, c14=0, c23=0, c24≠0, c34≠0]
[Symmetry on vertices: <[23]> subgroup S4]

Lemma 2 yields [c12=0, c14=0, c24≠0]:
a1=0=b1

Lemma 3 yields [c23=0, c24≠0, c34≠0]:



a2=0 IFF a3=0
b2=0 IFF b3=0

Also, from c24≠0, we have:
[a2≠0 AND b4≠0] OR [a4≠0 AND b2≠0]

Case 5: [c12=0, c13=0, c14=0, c23=0, c24=0, c34≠0]
[Symmetry on vertices: <[12],[34]> subgroup S4]

Lemma 2 yields [c13=0, c14=0, c34≠0; c23=0, c24=0, c34≠0]:
a1=0=b1

a2=0=b2

Also, from c34≠0, we have:
[a3≠0 AND b4≠0] OR [a4≠0 AND b3≠0]

Case 6: [c12=0, c13=0, c14=0, c23=0, c24=0, c34=0]
[Symmetry on vertices: S4]

We have, for Case 6:
α=0 OR β=0

OR all of these:
a1=0 IFF b1=0
a2=0 IFF b2=0
a3=0 IFF b3=0
a4=0 IFF b4=0

Sketch of calculational proof:
Since 0^β=0=α^0, we need only consider the case when α≠0≠β.  In this case, by the

problem symmetry we need only to prove a1=0 IFF b1=0.
Suppose a1=0.  Then, by definition of cij [j=2..4], ajb1=0.  Since α≠0, one of aj≠0, yielding

b1=0.  This proves a1=0 IMPLIES b1=0; swap a and b to get parallel reasoning for the other
direction (yielding a1=0 IFF b1=0).
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