Pointwise Qualitative Factorization of 2-forms into 1-forms over R⁴

Kenneth Boyd and Franci, Math Consultant™ V0.3.9.6+ ©1998-2002

Abstract: Assume an arbitrary 2-form over R^4 , and a fixed point x in R^4 for which the signs [+,0,-] of all six coordinates of the 2-form are known, are given. If the 2-form factors into a wedge product of two 1-forms, a complete classification of the possible combinations of signs of the coordinates of the 1-forms (at x) is presented. Also, it is shown that some sign combinations in the coordinates of the 2-form preclude the 2-form being factorizable into a wedge product of two 1-forms.

Why would we want this problem solved?

An elementary example is relativistic gyroscopic precession. A spinning body (an electron, the Earth, etc.) that accelerates because forces act on its center of mass precesses its axis of rotation according to the formula

$dS/d\tau = (\mathbf{u} \wedge \mathbf{a}) \cdot \mathbf{S}$

where τ is proper time measured along the object's worldline, **S** is the angular-moment 4-vector of the object, **u** is the 4-velocity of the object, and **a** is the 4-acceleration applied to the center of mass of the object. The pointwise algebraic constraints discussed in this paper are constraints on the 2-form , which is known to be a wedge product of two 1-forms. [From another point of view, the angular momentum is Fermi-Walker transported.]

By definition, all 4-vectors, 1-forms, and 2-forms mentioned are over a 4-dimensional space-time manifold, which locally cannot be distinguished from R^4 . Thus, the pointwise algebraic constraints, to be discussed, are applicable in any space-time manifold, except at singularities.

Problem definition

Use the standard basis for R^4 , and the induced standard basis for 1-forms and 2-forms over R^4 . Denote the coordinates (in R) of a fixed 2-form ω (at a fixed point x in R^4), by

$$\omega(x) = c_{12} dx^{1^{\wedge}} dx^2 + c_{13} dx^{1^{\wedge}} dx^3 + c_{14} dx^{1^{\wedge}} dx^4 + c_{23} dx^{2^{\wedge}} dx^3 + c_{24} dx^{2^{\wedge}} dx^4 + c_{34} dx^{3^{\wedge}} dx^4 + c_{34} dx^{3^{\wedge}} dx^4 + c_{34} dx^{3^{\vee}} dx^4 + c_{34} dx^{3$$

Also, (assuming that 1-forms α , β exist such that $\omega = \alpha^{\beta}\beta$), denote these in coordinates (in **R**) by

$$\alpha(x) = a_1 dx^{1+} a_2 dx^{2+} a_3 dx^{3+} a_4 dx^4$$

$$\beta(x) = b_1 dx^{1+} b_2 dx^{2+} b_3 dx^{3+} b_4 dx^4$$

Recall that in (assumed possible) the coordinate computation of $\omega = \alpha^{\beta}\beta$,

We sometimes use i, j = 1..4. [i < j] when used as subscripts in c_{ij} ; otherwise, i and j are not necessarily related. Note that in the above translation, using the permutation [ab] on the above equations is the coordinate version of writing $-\omega = \beta^{\alpha} \alpha$. We will use this freely when using the computational lemmas [i.e.: the permutation [ab] may be applied globally in a lemma, provided all of the c_{ij} are negated.]

Finally, we require that it be known, for each of the 2-form coordinates c_{ij} , whether it is positive, zero, or negative $[c_{ij}>0, c_{ij}=0, c_{ij}<0]$. Parts of the classification will consider two of these cases at once, for various c_{ij} .

From this information, we want to know:

- Is it possible to rule out a factorization $\omega = \alpha^{\beta}\beta$, just from the sign information for the c_{ii} ?
- If we have failed to rule out such a factorization $\omega = \alpha^{\beta}\beta$, what does the sign information for the c_{ii} allow us to infer about sign information for the a_{i} , b_i ?

Computing the action of the symmetric group S₄ on the coordinates

It will be useful, in reducing the amount of work in the classification, to have an explicit description of the action of the symmetric group S_4 on the 2-form coordinates c_{ij} , as well as the effects of this action on the constraints. [For the rest of this paper, S_4 shall always refer to the symmetric group S_4 .]

id	[12]	[13]	[14]	[23]	[24]	[34]	[123]	[132]	[124]	[142]	[134]
c ₁₂	-c ₁₂	-c ₂₃	-c ₂₄	c ₁₃	c ₁₄	c ₁₂	c ₂₃	-c ₁₃	c ₂₄	-c ₁₄	-c ₂₃
c ₁₃	c ₂₃	-c ₁₃	-c ₃₄	c ₁₂	c ₁₃	c ₁₄	-c ₁₂	-c ₂₃	c ₂₃	-c ₃₄	c ₃₄
c ₁₄	c ₂₄	c ₃₄	-c ₁₄	c ₁₄	c ₁₂	c ₁₃	c ₂₄	c ₃₄	-c ₁₂	-c ₂₄	-c ₁₃
c ₂₃	c ₁₃	-c ₁₂	c ₂₃	-c ₂₃	-c ₃₄	c ₂₄	-c ₁₃	c ₁₂	-c ₃₄	c ₁₄	c ₂₄
c ₂₄	c ₁₄	c ₂₄	-c ₁₂	c ₃₄	-c ₂₄	c ₂₃	c ₃₄	c ₁₄	-c ₁₄	c ₁₂	-c ₁₂
c ₃₄	c ₃₄	c ₁₄	-c ₁₃	c ₂₄	-c ₂₃	-c ₃₄	c ₁₄	c ₂₄	-c ₁₃	-c ₂₃	-c ₁₄
				1		1					
[143]	[234]	[243]	[12] [34]	[13] [24]	[14] [23]	[1234]	[1243]	[1324]	[1342]	[1423]	[1432]
-c ₂₄	c ₁₃	c ₁₄	-c ₁₂	c ₃₄	-c ₃₄	c ₂₃	c ₂₄	c ₃₄	-c ₁₃	-c ₃₄	-c ₁₄
-c ₁₄	c ₁₄	c ₁₂	c ₂₄	-c ₁₃	-c ₂₄	c ₂₄	-c ₁₂	-c ₂₃	c ₃₄	-c ₁₄	-c ₂₄
-c ₃₄	c ₁₂	c ₁₃	c ₂₃	-c ₂₃	-c ₁₄	-c ₁₂	c ₂₃	-c ₁₃	-c ₂₃	-c ₂₄	c ₃₄
-c ₁₂	c ₃₄	-c ₂₄	c ₁₄	-c ₁₄	-c ₂₃	c ₃₄	-c ₁₄	-c ₂₄	c ₁₄	-c ₁₃	c ₁₂
c ₂₃	-c ₂₃	-c ₃₄	c ₁₃	-c ₂₄	-c ₁₃	-c ₁₃	-c ₃₄	-c ₁₄	c ₁₂	-c ₂₃	c ₁₃
c ₁₃	-c ₂₄	c ₂₃	-c ₃₄	c ₁₂	-c ₁₂	c ₁₄	c ₁₃	-c ₁₂	-c ₂₄	c ₁₂	c ₂₃

The overall results are as follows:

A graphical method of computing the above action is illustrated as follows:

The edges with vertices i,j index the coefficient c_{ij} , in standard orientation. It will be convenient to define [for $1 \le i \le j \le 4$]

As an example, consider the image of the transposition [12]:

Either the graphical method, or the algebraic-table method, may be used in calculating the equivalence classes of the various cases in the classification.

Computational facts

Besides the sign information about $a_i b_j$ relative to a_i and b_j , and c_{ij} relative to $a_i b_j$ - $a_j b_i$,

	b _j <0	b _j =0	b _j >0		$a_j b_i < 0$	$a_j b_i = 0$	$a_j b_i > 0$
a _i <0	$a_i b_j > 0$	$a_i b_j = 0$	$a_i b_j \leq 0$	$a_i b_j \leq 0$	c _{ij} ?0	c _{ij} <0	c _{ij} <0
a _i =0	$a_i b_j = 0$	$a_i b_j = 0$	$a_i b_j = 0$	$a_i b_j = 0$	c _{ij} >0	c _{ij} =0	c _{ij} <0
a _i >0	$a_i b_j < 0$	$a_i b_j = 0$	$a_i b_j > 0$	$a_i b_j > 0$	c _{ij} >0	c _{ij} >0	c _{ij} ?0

Note: c _{ij} <0 implies	OR OR OR	$\begin{array}{l} [a_i < 0 \text{ AND } b_j > 0] \\ [a_i > 0 \text{ AND } b_j < 0] \\ [a_j < 0 \text{ AND } b_i < 0] \\ [a_j > 0 \text{ AND } b_i > 0] \end{array}$
Note: c _{ij} >0 implies	OR OR OR	$[a_i < 0 \text{ AND } b_j < 0]$ $[a_i > 0 \text{ AND } b_j > 0]$ $[a_j < 0 \text{ AND } b_i > 0]$ $[a_i > 0 \text{ AND } b_i < 0]$

Note: $c_{ij}=0$ implies		$[a_i \leq 0 \text{ AND } a_i \leq 0 \text{ AND } b_i \leq 0 \text{ AND } b_i \leq 0]$
5	OR	$[a_i > 0 \text{ AND } a_i < 0 \text{ AND } b_i < 0 \text{ AND } b_i > 0]$
	OR	$[a_i < 0 \text{ AND } a_i > 0 \text{ AND } b_i > 0 \text{ AND } b_i < 0]$
	OR	$[a_i > 0 \text{ AND } a_j > 0 \text{ AND } b_i > 0 \text{ AND } b_j > 0]$
	OR	$[a_i=0 \text{ AND } a_i=0]$
	OR	$[a_i=0 \text{ AND } b_i=0]$
	OR	$[b_j=0 \text{ AND } a_j=0]$
	OR	$[b_i=0 \text{ AND } b_i=0]$
	OR	$[a_i < 0 \text{ AND } a_i < 0 \text{ AND } b_i > 0 \text{ AND } b_i > 0]$
	OR	$[a_i > 0 \text{ AND } a_i < 0 \text{ AND } b_i > 0 \text{ AND } b_i < 0]$
	OR	$[a_i < 0 \text{ AND } a_i > 0 \text{ AND } b_i < 0 \text{ AND } b_i > 0]$
	OR	$[a_i \ge 0 \text{ AND } a_j \ge 0 \text{ AND } b_i \le 0 \text{ AND } b_j \le 0]$

Note [there is an analog for $a_i \neq 0 \neq a_i$]:

$$c_{ij} = a_i b_j - a_j b_i > 0 iff \frac{a_i}{b_i} > \frac{a_j}{b_j}$$
$$b_i \neq 0 \neq b_j IMPLIES[c_{ij} = a_i b_j - a_j b_i = 0 iff \frac{a_i}{b_i} = \frac{a_j}{b_j}]$$
$$c_{ij} = a_i b_j - a_j b_i < 0 iff \frac{a_i}{b_i} < \frac{a_j}{b_j}$$

Note: the configuration $c_{ij}=0=c_{ik}$, $c_{jk}\neq 0$, implies that at least one of a_i , a_j , a_k is zero, and also that at least one of b_i , b_j , and b_k is zero. [Otherwise, the calculational note about comparing quotients applies, and $c_{jk}=0$ — contradiction.]. As a shorthand, we refer to instances of the above comment as ALO1(i,j,k); the arguments do not commute, and j<k by convention.

In fact, the conditions yielding ALO1(i,j,k) actually imply that $[a_i=0=b_i]$. [This will be Lemma 2, later.] We will prove this directly at Lemma 2. A way to visualize this is that the cross-product of two vectors in R³ is the dual of the wedge product of the vectors (reinterpreted coordinate-wise as 1-forms) over R³. The hypothesis then translates to requiring the cross-product to be a vector that is non-zero only in the first coordinate; since the cross-product, geometrically, is perpendicular to both of the vectors it was computed from, both of the vectors it was computed from have first coordinate zero. [Actually, we will (re)prove that the visualization is a correct interpretation of the cross-product over R³.]

Computational Lemmas

Lemma 0

Sketch of calculational proof: element chase of the first two tables in the computational facts. The first three use the hypothesis to single out the second row of the RHS table, while the last three use the hypothesis to single out the second column of the RHS table.

Lemma 1

$$[[a_i=0 \text{ OR } [b_i=0 \text{ AND } b_k=0]] \text{ AND } c_{ii}\neq 0 \text{ AND } c_{ik}=0] \text{ IMPLIES } a_k=0$$

Sketch of calculational proof:

Recall that $c_{ij}=a_ib_j - a_jb_i$. Use Lemma 0 with $c_{ij}\neq 0$ to get $a_jb_i\neq 0$ [making $b_i\neq 0$], and with $c_{ik}=0$ to get $a_kb_i=0$. Since $b_i\neq 0$, and R has no zero divisors, $a_k=0$.

[**NOTE**: other variations on the above hypotheses [two 2-form coordinates with a common index, and a variable entering into at least one of the coordinate calculations, are constrained] lead to repeats of instances of lemma 0. I have suppressed the repeats of lemma 0 in lemma 1.]

Lemma 2:

$$[c_{ii}=0=c_{ik} \text{ AND } c_{ik}\neq 0] \text{ IMPLIES } [a_i=0=b_i \text{ AND } c_{im}=0]$$

Sketch of calculational proof: We have (using calculational notes about the hypothesized entries):

	[$[a_i < 0 \text{ AND } a_i < 0 \text{ AND } b_i < 0 \text{ AND } b_i < 0]$	
		OR	$[a_i \ge 0 \text{ AND } a_i \le 0 \text{ AND } b_i \le 0 \text{ AND } b_i \ge 0]$	
		OR	$[a_i < 0 \text{ AND } a_i > 0 \text{ AND } b_i > 0 \text{ AND } b_i < 0]$	
		OR	$[a_i > 0 \text{ AND } a_i > 0 \text{ AND } b_i > 0 \text{ AND } b_i > 0]$	
		OR	$[a_i=0 \text{ AND } a_i=0]$	
		OR	$[a_i=0 \text{ AND } b_i=0]$	
		OR	$[b_i=0 \text{ AND } a_i=0]$	
		OR	$[b_i=0 \text{ AND } b_i=0]$	
		OR	$[a_i < 0 \text{ AND } a_i < 0 \text{ AND } b_i > 0 \text{ AND } b_i > 0]$	
		OR	$[a_i > 0 \text{ AND } a_i < 0 \text{ AND } b_i > 0 \text{ AND } b_i < 0]$	
		OR	$[a_i < 0 \text{ AND } a_i > 0 \text{ AND } b_i < 0 \text{ AND } b_i > 0]$	
		OR	$[a_i > 0 \text{ AND } a_i > 0 \text{ AND } b_i < 0 \text{ AND } b_i < 0]$]
AND	[$[a_i < 0 \text{ AND } a_k < 0 \text{ AND } b_i < 0 \text{ AND } b_k < 0]$	
		OR	$[a_i \ge 0 \text{ AND } a_k \le 0 \text{ AND } b_i \le 0 \text{ AND } b_k \ge 0]$	
		OR	$[a_i \le 0 \text{ AND } a_k \ge 0 \text{ AND } b_i \ge 0 \text{ AND } b_k \le 0]$	
		OR	$[a_i \ge 0 \text{ AND } a_k \ge 0 \text{ AND } b_i \ge 0 \text{ AND } b_k \ge 0]$	
		OR	$[a_i=0 \text{ AND } a_k=0]$	
		OR	$[a_i=0 \text{ AND } b_i=0]$	
		OR	$[b_k=0 \text{ AND } a_k=0]$	
		OR	$[b_k=0 \text{ AND } b_i=0]$	
		OR	$[a_i \le 0 \text{ AND } a_k \le 0 \text{ AND } b_i \ge 0 \text{ AND } b_k \ge 0]$	
		OR	$[a_i \ge 0 \text{ AND } a_k \le 0 \text{ AND } b_i \ge 0 \text{ AND } b_k \le 0]$	
		OR	$[a_i \le 0 \text{ AND } a_k \ge 0 \text{ AND } b_i \le 0 \text{ AND } b_k \ge 0]$	
		OR	$[a_i \ge 0 \text{ AND } a_k \ge 0 \text{ AND } b_i \le 0 \text{ AND } b_k \le 0]$]
AND	[$[a_j \neq 0 \text{ AND } b_k \neq 0]$	
		OR	$[a_k \neq 0 \text{ AND } b_j \neq 0]$]	

The third OR-clause implies (but not conversely) that $[a_j \neq 0 \text{ OR } b_j \neq 0]$ and $[a_k \neq 0 \text{ OR } b_k \neq 0]$. Applying this to the first and second OR-clauses yields:

rr-j				
	[$[a_i \leq 0 \text{ AND } a_j \leq 0 \text{ AND } b_i \leq 0 \text{ AND } b_j \leq 0]$	
		OR	$[a_i \ge 0 \text{ AND } a_i \le 0 \text{ AND } b_i \le 0 \text{ AND } b_i \ge 0]$	
		OR	$[a_i < 0 \text{ AND } a_i > 0 \text{ AND } b_i > 0 \text{ AND } b_i < 0]$	
		OR	$[a_i > 0 \text{ AND } a_i > 0 \text{ AND } b_i > 0 \text{ AND } b_i > 0]$	
		OR	$[a_i=0 \text{ AND } a_i=0]$	
		OR	$[a_i=0 \text{ AND } b_i=0]$	
		OR	[b _i =0 AND b _i =0]	
		OR	$[a_i < 0 \text{ AND } a_i < 0 \text{ AND } b_i > 0 \text{ AND } b_i > 0]$	
		OR	[a > 0 AND a < 0 AND b > 0 AND b < 0]	
		OR	$[a_i < 0 \text{ AND } a_i > 0 \text{ AND } b_i < 0 \text{ AND } b_i > 0]$	
		OR	$[a_i > 0 \text{ AND } a_i > 0 \text{ AND } b_i < 0 \text{ AND } b_i < 0]$]
AND	[$[a_i < 0 \text{ AND } a_k < 0 \text{ AND } b_i < 0 \text{ AND } b_k < 0]$	
		OR	$[a_i \ge 0 \text{ AND } a_k \le 0 \text{ AND } b_i \le 0 \text{ AND } b_k \ge 0]$	
		OR	$[a_i < 0 \text{ AND } a_k > 0 \text{ AND } b_i > 0 \text{ AND } b_k < 0]$	
		OR	$[a_i > 0 \text{ AND } a_k > 0 \text{ AND } b_i > 0 \text{ AND } b_k > 0]$	
		OR	$[a_i=0 \text{ AND } a_k=0]$	
		OR	$[a_i=0 \text{ AND } b_i=0]$	
		OR	$[b_k=0 \text{ AND } b_i=0]$	
		OR	$[a_i < 0 \text{ AND } a_k < 0 \text{ AND } b_i > 0 \text{ AND } b_k > 0]$	
		OR	$[a_i \ge 0 \text{ AND } a_k \le 0 \text{ AND } b_i \ge 0 \text{ AND } b_k \le 0]$	
		OR	$[a_i \leq 0 \text{ AND } a_k \geq 0 \text{ AND } b_i \leq 0 \text{ AND } b_k \geq 0]$	
		OR	$[a_i \ge 0 \text{ AND } a_k \ge 0 \text{ AND } b_i \le 0 \text{ AND } b_k \le 0]$]
AND	[$[a_j \neq 0 \text{ AND } b_k \neq 0]$	
		OR	$[a_k \neq 0 \text{ AND } b_j \neq 0]$]	

Now, ALO1(i,j,k) implies that when we expand the AND of the first two OR-clauses: the first four, and the last four, of the terms in the first OR-clause cannot successfully expand with any of the eleven terms in the second OR-clause. [The first four and the last four terms of the second OR-clause violate ALO1(i,j,k), and the central three terms of the second OR-clause directly contradict the term from the first OR-clause that we are expanding.] Similar reasoning holds with the first four, and the last four, terms of the second OR-clause. This allows reducing the above to:

	[$[a_i=0 \text{ AND } a_j=0]$	
		OR	$[a_i=0 \text{ AND } b_i=0]$	
		OR	$[b_i=0 \text{ AND } b_i=0]$]
AND	[$[a_i = 0 \text{ AND } a_k = 0]$	
		OR	$[a_i=0 \text{ AND } b_i=0]$	
		OR	$[b_k=0 \text{ AND } b_i=0]$]
AND	[$[a_i \neq 0 \text{ AND } b_k \neq 0]$	
		OR	$[a_k \neq 0 \text{ AND } b_i \neq 0]$]

Now, expand the AND of the first two OR-clauses:

[$[[a_i=0 \text{ AND } a_i=0] \text{ AND } [a_i=0 \text{ AND } a_k=0]]$	
	OR	$[[a_i=0 \text{ AND } a_i=0] \text{ AND } [a_i=0 \text{ AND } b_i=0]]$	
	OR	$[[a_i=0 \text{ AND } a_i=0] \text{ AND } [b_k=0 \text{ AND } b_i=0]]$	
	OR	$[[a_i=0 \text{ AND } b_i=0] \text{ AND } [a_i=0 \text{ AND } a_k=0]]$	
	OR	$[[a_i=0 \text{ AND } b_i=0] \text{ AND } [a_i=0 \text{ AND } b_i=0]]$	
	OR	$[[a_i=0 \text{ AND } b_i=0] \text{ AND } [b_k=0 \text{ AND } b_i=0]]$	
	OR	$[[b_i=0 \text{ AND } b_i=0] \text{ AND } [a_i=0 \text{ AND } a_k=0]]$	
	OR	$[[b_i=0 \text{ AND } b_i=0] \text{ AND } [a_i=0 \text{ AND } b_i=0]]$	
	OR	$[[b_i=0 \text{ AND } b_i=0] \text{ AND } [b_k=0 \text{ AND } b_i=0]]$]
D [$[a_i \neq 0 \text{ AND } b_k \neq 0]$	
	OR	$[a_k \neq 0 \text{ AND } b_i \neq 0]$]	

AN

[

i.e. (Redundancy elimination only, no sorting, remove second duplicate term: first OR-clause)

2	
	$[a_i=0 \text{ AND } a_j=0 \text{ AND } a_k=0]$
OR	$[a_i=0 \text{ AND } a_j=0 \text{ AND } b_i=0]$
OR	$[a_i=0 \text{ AND } a_i=0 \text{ AND } b_k=0 \text{ AND } b_i=0]$
OR	$[a_i=0 \text{ AND } b_i=0 \text{ AND } a_k=0]$
OR	$[a_i=0 \text{ AND } b_i=0]$
OR	$[a_i=0 \text{ AND } b_i=0 \text{ AND } b_k=0]$
OR	$[b_i=0 \text{ AND } b_i=0 \text{ AND } a_i=0 \text{ AND } a_k=0]$
OR	$[b_i=0 \text{ AND } b_i=0 \text{ AND } a_i=0]$
OR	$[b_i=0 \text{ AND } b_i=0 \text{ AND } b_k=0]$]
	$[a_i \neq 0 \text{ AND } b_k \neq 0]$
OR	$[a_{k} \neq 0 \text{ AND } b_{j} \neq 0]$]

AND [

Now, the second OR-clause also yields $[a_j \neq 0 \text{ OR } a_k \neq 0]$ and $[b_j \neq 0 \text{ OR } b_k \neq 0]$. This removes the first and last clauses of the first OR-clause:

[$[a_i=0 \text{ AND } a_i=0 \text{ AND } b_i=0]$
	OR	$[a_i=0 \text{ AND } a_i=0 \text{ AND } b_k=0 \text{ AND } b_i=0]$
	OR	$[a_i=0 \text{ AND } b_i=0 \text{ AND } a_k=0]$
	OR	$[a_i=0 \text{ AND } b_i=0]$
	OR	$[a_i=0 \text{ AND } b_i=0 \text{ AND } b_k=0]$
	OR	$[b_i=0 \text{ AND } b_i=0 \text{ AND } a_i=0 \text{ AND } a_k=0]$
	OR	$[b_i=0 \text{ AND } b_i=0 \text{ AND } a_i=0]$]
[$[a_i \neq 0 \text{ AND } b_k \neq 0]$
	OP	$\begin{bmatrix} 2 \\ -4 \end{bmatrix} + 0 \\ A \\ N \\ D \\ b + 0 \\ 1 \end{bmatrix} = 1$

AND

OR $[a_k \neq 0 \text{ AND } b_i \neq 0]$]

We can now factor [a=0 AND b=0] out of the first OR-clause: $[a_i=0 \text{ AND } b_i=0]$ AND [$[a_i=0]$ $[a_i=0 \text{ AND } b_k=0]$ OR OR $[a_k=0]$ [true] OR $[b_k=0]$ OR $[b_j=0 \text{ AND } a_k=0]$ OR OR $[b_i=0]$] AND [$[a_i \neq 0 \text{ AND } b_k \neq 0]$ $[a_k \neq 0 \text{ AND } b_i \neq 0]$ OR] ...

1.e. [th	e mrst	OK-clai	use is trivially true	
			$[a_i=0 \text{ AND } b_i=0]$	
AND	[[a _i ≠0 AND b _k ≠0]	
		OR	$[a_k \neq 0 \text{ AND } b_j \neq 0]$]

It is now trivial that $c_{im}=0$.

Lemma 3:

Sketch of calculational proof:

Assume $c_{ij}=0$, $c_{ik}\neq 0\neq c_{jk}$. Then Lemma 1 yields both ' $a_i=0$ implies $a_j=0$ ' [$c_{ik}\neq 0$, $c_{ij}=0$] and ' $a_j=0$ implies $a_i=0$ ' [$c_{jk}\neq 0$, $c_{ij}=0$], i.e. ' $a_i=0$ iff $a_j=0$ '.

Lemma 4:

$$\mathbf{c}_{13}\mathbf{c}_{24} = \mathbf{c}_{12}\mathbf{c}_{34} + \mathbf{c}_{14}\mathbf{c}_{23}$$

Sketch of calculational proof:

$$c_{12}c_{34}+c_{14}c_{23} = [a_1b_2-a_2b_1][a_3b_4-a_4b_3]+[a_1b_4-a_4b_1][a_2b_3-a_3b_2]$$

= $a_1b_2a_3b_4 - a_1b_2a_4b_3 - a_2b_1a_3b_4 + a_2b_1a_4b_3 + a_1b_4a_2b_3 - a_1b_4a_3b_2 - a_4b_1a_2b_3 + a_4b_1a_3b_2$
= $-a_1b_2a_4b_3 - a_2b_1a_3b_4 + a_1b_4a_2b_3 + a_4b_1a_3b_2 = [a_1b_3 - a_3b_1][a_2b_4 - a_4b_2] = c_{13}c_{24}$

It is a routine check that this equation is fixed under the S_4 vertex action. [The simplest way is to verify that the sign of all three terms is negated under the transpositions [14], [24], [34] — which are a generating set for S_4 .]

The classification

We will first do a preliminary classification, based on whether $c_{ij} = 0$, or $c_{ij} \neq 0$. We first enumerate the distinct cases (for the c_{ij}) under the action of S_4 on the indexes 1..4, and then explicitly describe the possible cases for the a_i and b_j , for each case of the c_{ij} .

We first enumerate representatives of the equivalence classes of the constraints:

Partial case	c ₁₂	c ₁₃	C ₁₄	c ₂₃	c ₂₄	C ₃₄	Images under S_4 action	Total cases per image	Total cases indexed by partial case
0	≠0	≠0	≠0	≠0	≠0	≠0	1	26=64	64
1	=0	≠0	≠0	<i>≠</i> 0	≠0	≠0	6	25=32	192
2A	=0	=0	≠0	≠0	≠0	≠0	12	24=16	192
2B	=0	<i>≠</i> 0	<i>≠</i> 0	<i>≠</i> 0	≠0	=0	3	24=16	48
3A	=0	=0	=0	<i>≠</i> 0	≠0	≠0	4	23=8	32
3B	=0	≠0	≠0	=0	≠0	=0	12	23=8	96
3C	=0	=0	≠0	=0	≠0	≠0	4	23=8	32
4A	=0	≠0	=0	=0	≠0	=0	3	22=4	12
4B	=0	=0	=0	=0	≠0	≠0	12	22=4	48
5	=0	=0	=0	=0	=0	≠0	6	21=2	12
6	=0	=0	=0	=0	=0	=0	1	20=1	1

The last column is for how many cases in the total classification are indexed by the above partial cases. The left-hand factor is the number of images of the representative under the S_4 action on the vertices; the right-hand factor is 2 to the number of $\neq 0$ constraints in the partial case. As a cross-check, note that the sum of the counts is $729[= 3^6]$, the number of cases to be dealt with in the total classification. Also, note that all of these cases are preserved by commuting the 1-forms in the wedge product [coordinate-wise, swapping a and b with the permutation [ab].] We

will use this symmetry freely, without comment, in the preliminary classification.

Note: Cases 2A, 3B, and 4A directly violate both Lemma 2 and Lemma 4, thus cannot factor into a wedge product of 1-forms. We only need to analyze the other cases.

Case 0: $[c_{12}\neq 0, c_{13}\neq 0, c_{14}\neq 0, c_{23}\neq 0, c_{24}\neq 0, c_{34}\neq 0]$ [Symmetry on vertices: S₄]

In Case 0, from all 6 $c_{ii} \neq 0$ we have:

 $\begin{bmatrix} a_1 \neq 0 \text{ AND } b_2 \neq 0 \end{bmatrix} \text{ OR } \begin{bmatrix} a_2 \neq 0 \text{ AND } b_1 \neq 0 \end{bmatrix}$ $\begin{bmatrix} a_1 \neq 0 \text{ AND } b_3 \neq 0 \end{bmatrix} \text{ OR } \begin{bmatrix} a_3 \neq 0 \text{ AND } b_1 \neq 0 \end{bmatrix}$ $\begin{bmatrix} a_1 \neq 0 \text{ AND } b_4 \neq 0 \end{bmatrix} \text{ OR } \begin{bmatrix} a_4 \neq 0 \text{ AND } b_1 \neq 0 \end{bmatrix}$ $\begin{bmatrix} a_2 \neq 0 \text{ AND } b_3 \neq 0 \end{bmatrix} \text{ OR } \begin{bmatrix} a_3 \neq 0 \text{ AND } b_2 \neq 0 \end{bmatrix}$ $\begin{bmatrix} a_2 \neq 0 \text{ AND } b_4 \neq 0 \end{bmatrix} \text{ OR } \begin{bmatrix} a_4 \neq 0 \text{ AND } b_2 \neq 0 \end{bmatrix}$ $\begin{bmatrix} a_3 \neq 0 \text{ AND } b_4 \neq 0 \end{bmatrix} \text{ OR } \begin{bmatrix} a_4 \neq 0 \text{ AND } b_2 \neq 0 \end{bmatrix}$ $\begin{bmatrix} a_3 \neq 0 \text{ AND } b_4 \neq 0 \end{bmatrix} \text{ OR } \begin{bmatrix} a_4 \neq 0 \text{ AND } b_2 \neq 0 \end{bmatrix}$

Lemma 4 rules out the following 16 subcases (either verify the S_4 vertex action and the kernel, or all 16 cases):

Computation	of	ima	iges	s ur	ndei	c ve	ertex S4 action of	
c 12<0, c 13	3<0,	С	14<	<0,	с 2	23<0), c 24>0, c 34<0	
	12	13	14	23	24	34		
[id]	<	<	<	<	>	<	[234],[243]	// kernel
[23]	<	<	<	>	<	>	[24],[34]	
[14]	<	>	>	<	>	>	[1423],[1432]	
[13][24]	<	>	>	>	<	<	[132],[134]	
[12]	>	<	>	<	<	<	[1243],[1234]	
[14][23]	>	<	>	>	>	>	[142],[143]	
[12][34]	>	>	<	<	<	>	[123],[124]	
[13]	>	>	<	>	>	<	[1324],[1342]	
This does no Thus, the co Dual computa c_12>0, c_13 [id] [23] [14] [13][24] [12] [14][23] [12][34]	>t communication 3>0, 12 > > > < <	cont ited ited ited ited ited ited ited ite	cair d ca f i 142 14 > < < < < <	n it ase >0, 23 > < > < > < >	cs s jes c_2 24 <> <> > <>>	sigr der und 23>(34 > < < > < >	<pre>h-flip, qualitative bicted by: der vertex S4 action), c_24<0, c_34>0 [234],[243] [24],[34] [1423],[1432] [132],[134] [1243],[1234] [142],[143] [123],[124]</pre>	ely. on of // kernel
[13]	<	<	>	<	<	>	[1324],[1342]	

Case 1: $[c_{12}=0, c_{13}\neq 0, c_{14}\neq 0, c_{23}\neq 0, c_{24}\neq 0, c_{34}\neq 0]$ [Symmetry on vertices: <[12],[34]> subgroup S₄] Lemma 3 yields $[c_{12}=0, c_{13}\neq 0, c_{14}\neq 0]$:

 $a_1=0$ IFF $a_2=0$ $b_1=0$ IFF $b_2=0$

From $c_{13}\neq 0$, $c_{14}\neq 0$, $c_{23}\neq 0$, $c_{24}\neq 0$, $c_{34}\neq 0$, we have (after using above): $[a_1\neq 0 \text{ AND } b_3\neq 0] \text{ OR } [a_3\neq 0 \text{ AND } b_1\neq 0]$ $[a_1\neq 0 \text{ AND } b_4\neq 0] \text{ OR } [a_4\neq 0 \text{ AND } b_1\neq 0]$ $[a_3\neq 0 \text{ AND } b_4\neq 0] \text{ OR } [a_4\neq 0 \text{ AND } b_3\neq 0]$

Lemma 4 rules out the following subcases (again, either verify the S_4 action and the kernels, or all of the cases):

	12	13	14	23	24	34		
 Tvpe	II:	failed	Lemma	4				
71	=	<	<	<	>	<	[id]	// kernel
	=	<	>	<	<	<	[12]	
	=	<	<	>	<	>	[34]	
	=	>	<	<	<	>	[12][34]	
Type III: failed Lemma 4								
	=	<	<	<	>	>	[id]	// kernel
	=	<	>	<	<	>	[12]	
	=	<	<	>	<	<	[34]	
	=	>	<	<	<	<	[12][34]	
··· Tvpe	III	sign-fl	ip: fa	iled I	emma 4			
11 -	=	>	>	>	<	<	[id]	// kernel
	=	>	<	>	>	<	[12]	,,
	=	>	>	<	>	>	[34]	
	=	<	>	>	>	>	[12][34]	
Type	II s	ign-fli	p: fai	led Le	emma 4			
	=	>	>	>	<	>	[id]	// kernel
	=	>	<	>	>	>	[12]	
	=	>	>	<	>	<	[34]	
	=	<	>	>	>	<	[12][34]	

Case 2B: $[c_{12}=0, c_{13}\neq 0, c_{14}\neq 0, c_{23}\neq 0, c_{24}\neq 0, c_{34}=0]$ [Symmetry on vertices: <[12],[34],[13][24]> subgroup S₄]

Lemma 3 yields
$$[c_{12}=0, c_{13}\neq 0, c_{14}\neq 0, c_{23}\neq 0, c_{24}\neq 0, c_{34}=0]$$
:
 $a_1=0$ IFF $a_2=0$
 $b_1=0$ IFF $b_2=0$
 $a_3=0$ IFF $a_4=0$
 $b_3=0$ IFF $b_4=0$

From $c_{13} \neq 0$, we have:

```
[a_1 \neq 0 \text{ AND } b_3 \neq 0] \text{ OR } [a_3 \neq 0 \text{ AND } b_1 \neq 0]
```

Lemma 4 rules out the following subcases (again, either verify the S_4 action and the kernels, or all of the cases):

```
12
             13
                    14
                           23
                                 24
                                        34
. . .
Type II: failed Lemma 4
                                 >
                                                            // kernel
                           <
                                              [id]
             <
                    <
                                        =
                           <
                                 <
                                               [12]
             <
                    >
      =
                                        =
                          >
             <
                    <
                                 <
                                               [34]
      =
                                        =
                          <
             >
                    <
                                 <
                                        =
                                               [12][34]
      =
Type II sign-flip: failed Lemma 4
                                                            // kernel
                                               [id]
                    >
                          >
                                        =
             >
      =
             >
                    <
                          >
                                 >
                                               [12]
      =
                                        =
             >
                    >
                          <
                                 >
                                               [34]
      =
                                        =
             <
                    >
                          >
                                 >
                                        _
                                               [12][34]
      _
```

Case 3A: $[c_{12}=0, c_{13}=0, c_{14}=0, c_{23}\neq 0, c_{24}\neq 0, c_{34}\neq 0]$ [Symmetry on vertices: Perm({2,3,4}) subgroup S₄]

Lemma 2 $[c_{12}=0, c_{13}=0, c_{23}\neq 0]$ yields for Case 3A: $a_1=0=b_1$

We also have, from $c_{23}\neq 0$, $c_{24}\neq 0$, $c_{34}\neq 0$:

 $\begin{array}{l} [a_2 \neq 0 \text{ AND } b_3 \neq 0] \text{ OR } [a_3 \neq 0 \text{ AND } b_2 \neq 0] \\ [a_2 \neq 0 \text{ AND } b_4 \neq 0] \text{ OR } [a_4 \neq 0 \text{ AND } b_2 \neq 0] \\ [a_3 \neq 0 \text{ AND } b_4 \neq 0] \text{ OR } [a_4 \neq 0 \text{ AND } b_3 \neq 0] \end{array}$

Case 3C: $[c_{12}=0, c_{13}=0, c_{14}\neq 0, c_{23}=0, c_{24}\neq 0, c_{34}\neq 0]$ [Symmetry on vertices: S₃ subgroup S₄]

Lemma 3 yields $[c_{12}=0, c_{14}\neq 0, c_{24}\neq 0; c_{13}=0, c_{14}\neq 0, c_{34}\neq 0; c_{23}=0, c_{24}\neq 0, c_{34}\neq 0]$: $a_1=0$ IFF $a_2=0$ IFF $a_3=0$ $b_1=0$ IFF $b_2=0$ IFF $b_3=0$

From $c_{14} \neq 0$, we also have:

 $[a_1 \neq 0 \text{ AND } b_4 \neq 0] \text{ OR } [a_4 \neq 0 \text{ AND } b_1 \neq 0]$

Case 4B: $[c_{12}=0, c_{13}=0, c_{14}=0, c_{23}=0, c_{24}\neq 0, c_{34}\neq 0]$ [Symmetry on vertices: <[23]> subgroup S_4]

Lemma 2 yields $[c_{12}=0, c_{14}=0, c_{24}\neq 0]$:

 $a_1 = 0 = b_1$

Lemma 3 yields $[c_{23}=0, c_{24}\neq 0, c_{34}\neq 0]$:

$$a_2=0$$
 IFF $a_3=0$
 $b_2=0$ IFF $b_3=0$

Also, from $c_{24} \neq 0$, we have:

 $[a_2 \neq 0 \text{ AND } b_4 \neq 0] \text{ OR } [a_4 \neq 0 \text{ AND } b_2 \neq 0]$

Case 5: $[c_{12}=0, c_{13}=0, c_{14}=0, c_{23}=0, c_{24}=0, c_{34}\neq 0]$ [Symmetry on vertices: <[12], [34]> subgroup S₄]

Lemma 2 yields [$c_{13}=0$, $c_{14}=0$, $c_{34}\neq0$; $c_{23}=0$, $c_{24}=0$, $c_{34}\neq0$]: $a_1=0=b_1$ $a_2=0=b_2$

Also, from $c_{34} \neq 0$, we have:

 $[a_3 \neq 0 \text{ AND } b_4 \neq 0] \text{ OR } [a_4 \neq 0 \text{ AND } b_3 \neq 0]$

Case 6: $[c_{12}=0, c_{13}=0, c_{14}=0, c_{23}=0, c_{24}=0, c_{34}=0]$ [Symmetry on vertices: S₄]

We have, for Case 6:

 α =0 OR β =0 OR all of these: a_1 =0 IFF b_1 =0 a_2 =0 IFF b_2 =0 a_3 =0 IFF b_3 =0 a_4 =0 IFF b_4 =0

Sketch of calculational proof:

Since $0^{\beta}=0=\alpha^{0}$, we need only consider the case when $\alpha\neq 0\neq\beta$. In this case, by the problem symmetry we need only to prove $a_1=0$ IFF $b_1=0$.

Suppose $a_1=0$. Then, by definition of c_{ij} [j=2..4], $a_jb_1=0$. Since $\alpha \neq 0$, one of $a_j \neq 0$, yielding $b_1=0$. This proves $a_1=0$ IMPLIES $b_1=0$; swap a and b to get parallel reasoning for the other direction (yielding $a_1=0$ IFF $b_1=0$).

Editors

Critical editing was kindly provided by Professors Robert Burckel and David Yetter at Kansas State University.